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Absh-set. A single-site dynamic spin correlation function in paramagnetic iron is considered, 
taking into account electron-electron correlation effects in the single-site approximation of 
multiple scattering theory Correlation effects significantly change the spin correlation 
function,especiallyat low frequencies, and have allowedus toobtain, io theenergyinterval 
OSho SO. leV,  the value 1 . 3 ~ ~  of the local magnetic moment, in accordance with 
polarized neutron scatteringexperiments. The damping time for the spin correlation function 
is estimated to be approximately lO-”s, which greatly exceeds the electron hopping time, 
-10-15 s. 

1. Introduction 

The widely discussed question of the character of spin excitations in itinerant electron 
systems of metallic magnets (see e.g. Panel discussion on ICM-82 1983) and also prob- 
lems arising from interpretation of experiments on neutron scattering (Lynn and Mook 
1981, Wickstedetnll984,Mook 1988) pose the problemof thecalculationofthedynamic 
spin correlation function. The spin correlation function in magnetic metals has been 
considered in both theoretical (Edwards 1982, 1983, Capellmann and Vieira 1982, 
Oguchi eta1 1983, Hasegawa 1983, Gyorffy et& 1985) and experimental works (Brown 
et a1 1982, Ishikawa 1983, Shirane ef d 1986). Most of these works dealt with the space 
variation of spin density, which determines the short-range magnetic order. Of similar 
importance is the time dependence of the electron spin density, because in experiments 
on neutron and electron scattering, photoemission, etc, it is necessary to take into 
account the relation between the measurement time, i.e. the time of interaction of an 
external force with the system, and the relaxation time. However, to date the problem 
of the time dependence of spin excitations in an electron system has not been studied io 
detail, although the problem was discussed on a qualitative level by Capellmann (1982) 
and Edwards (1984). 

Over the last decade increasing interest in different fluctuation theories of transition- 
metal magnetism has been observed (see e.g. Moriya 1986, Capehann 1987). These 
theories clearly lead to the conclusion that the fluctuations of electron spin density play 
an important, and sometimes determining, role in many properties of transition metals. 
In the construction of these theories it is also important to make clear the relation 
between the time for formation of an electron state in metals (which is comparable with 
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the time for electron transfer from one site to a neighbouring site in the crystal lattice) 
and the time for formation and changing of local magnetic moments. In particular, if the 
time of magnetic moment variation rm is greater than the time of electron hopping 
re - h/W - 0.1-1 fs (W is the bandwidth and 1 fs = s), then one may use, for the 
description of the electron scattering mechanism, an approximation analogous to the 
adiabatic approximation in the crystal lattice theory, and thus substantiate, in a sense, 
the widely used static approximation for spin fluctuation theories. 

The spin correlation function is connected with the dynamic susceptibility by the 
fluctuation-dissipation theorem. Therefore studies of susceptibility may help to con- 
struct the time dependence of local magnetic moments. One of the first and consistent 
works on calculations of the dynamic susceptibility in metallic systems was the work by 
Cooke et al(1980). The dynamic susceptibility and also spin-wave energies for iron and 
nickel calculated there are in good agreement with experiment. Analogous calculations 
were carried out by Callaway et al (1983). But all these calculations are applicable to 
metallic magnets only at relatively low temperatures, since the random-phase approxi- 
mation (RPA) used in these works describes only long-wave magnons well enough. At 
temperatures comparable with the phase transition temperature (for strong ferro- 
magnets 7', - 1000 K) the short-wave excitations (spin fluctuations) become important. 
Therefore it is necessary to modify the calculation scheme so that it accounts for short- 
wave excitations. One of the simplest variants of such accounting will be considered in 
this paper, 
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2. Local spin susceptibility 

The Fourier transform of the spin susceptibility is given by 

Here SE(() is the spin moment operator on the nth site of the lattice, taken in the 
Heisenberg representation with total Hamiltonian H. Index a ( = x , y ,  z )  specifies com- 
ponents of the spin operator. Angle brackets in (2.1) denote quantum statistical aver- 
aging and square brackets denote commutation. An infinitesimal positive addition 6 
provides convergence of the corresponding integrals. The magnetic moment operator 
is connected with the spin moment operator by the relation& = -gpB$. 

Thesite spin moment operator isdeterminedvia theoperator ofelectronspindensity 
S(r, r ) :  

where Q, is the volume of the Wigner-Seitz cell centred on the nth site. The electron 
spin density is formed by spin moments S, of all electrons: 

$r, t )  = Si(t)6(r - ri ( t ) ) .  (2.3) 

For systems described by a one-electron Hamiltonian 

Ho = Epial  (2.4) 
I 

the susceptibility may be obtained as 
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Here E! is the one-electron energy, a, (a:) is an annihilation (creation) operator of an 
electron in state 1 in the second quantized representation. Index 1 = (k ,  I, U )  involves 
the electron wavevector k ,  the band number I and the spin projection index r~ = 
21 ( t , J ). VectorR. connects the origin of coordinates with the nth site of the lattice, 
and Rnn* = R, - R,.. The equation (2.5) includes an integral 

where Vu,&) is the one-electron Bloch function normalized to unity over all the crystal. 
Besides that, the formula (2.5) includes matrix elements azo,. of the Pauli matrices f, 
zY, z'and the Fermi-Dirac distribution functionf, = (1 + exp[(&, - p)/kBT]}- ' ,  p being 
the chemical potential. 

The problem of susceptibility calculations for a system of interacting electrons is 
more difficult, because it is necessary to take into account many-particle effects of 
electron correlations. At this point, the susceptibility of the system may differ sig- 
nificantly from the 'zero'susceptibility ofasystemof non-interactingelectrons, described 
by the one-electron Hamiltonian (2.4). Let us suppose that the total Hamiltonian Hof 
the electron system has Hubbard's form: 

H = H 0 + 1 I : p . , p , ,  (2.7) 
n 

where &$the electron number operator on the nth site with spin projection uandlis the 
effective Stoner-Hubbard constant of the electron-electron interaction. Henceforward, 
we are considering the paramagnetic case, assuming all directions in space to be equiv- 
alent. 

In the standard RPA the total susceptibility can be expressed through the zero 
susceptibility (Izuyama et al1963): 

X ( C  w) = XO(% o)/P - 2IX0(4> w)l (2.8) 

where q is the wavevector. In site representation, formula (2.8) has the form 

(2.9) 

However, formula (2.8) inadequately describes susceptibility at high temperatures, 
because in obtaining it the interaction between different modes of spin excitations was 
neglected, which is, in some sense, equivalent to a long-wave approximation. 

The more general formula for inter-site susceptibility is 

(2.10) 

Here rn(o) is the effective vertex part, which describes effects of multiple electron 
scattering. In deriving formula (2.9) it is supposed that all sites are equivalent and 
electron-electron interaction is the same on all sites and determined by constant I. As 
forformula(2. lo), it takes into account thedifferenceofelectron interaction for different 
energies and wavelengths. This difference is connected with the existence of thermal and 
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quantum excitations of electron density, which lead to an inhomogeneous distribution of 
potentials in both space and time. 

At high temperatures the electron system is strongly inhomogeneous because of 
large fluctuations of spin and charge density. This leads to almost complete loss of 
memory about electron wave phase on electron transition from one site to another. As 
a result, through multiple scattering on fluctuation potentials of neighbouring sites, 
the electrons arrive at a given site with different phases, and contributions to the 
susceptibility from inter-site transitions are extinguished. In this case it is sufficient in 
thesumofequation(2.10)toretainonlyonetermwithn = n'. Wewillcallthisapproach 
the single-site approximation (SSA). Neglecting the frequency dependence of the func- 
tion r,, we replace r, by an effective constant U. Then for paramagnetic local sus- 
ceptibility 
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X L  = xz = tkL+ + x:"' - X A J  - xh' ) 

xtSA(w) = XoL(~)/ l l  - 2UxOL(w)I 

(2.11) 

(2.12) 

we have 

where ~ f ( w )  is the zero local susceptibility obtained from (2.5) at 01 = j3 and n = n'. 
The usual RPA susceptibility (2.8) contains enhancement for one fixed q-mode only. 

This approach is suitable for an ideal crystal. But at high temperatures ideality is broken 
and the strong interaction of modes with different p takes place. The simplest way to 
account for this circumstance is to replace x"(q, w )  in the denominator of (2.8) by an 
average: 

(2.13) 

N being the number of q-vectors in the Brillouin zone. Then, after summation over q,  it 
is obtained from (2.8) that 

(2.14) 

whichisequivalent toexclusionofall termsin(2.9) withn # n'. Althoughformula(2.12) 
coincides in structure with formula (2.14), it includes the parameter U, which is the 
renormalized constant I with due regard for multiple electron scattering on spin and 
charge fluctuations. 

XL(@) = x!(w)/[l - 21x!(w)l 

At high temperatures the local spin susceptibility xtSA(w) is preferable to 

since the main contribution to thermodynamic quantities in this case is due to short- 
wave spin excitations. 

In this work we concentrate on the spin correlation function, for which the method 
of polarized neutron scattering remains the main experimental method. Characteristic 
neutron excitation energies are dozens of millielectronvolts (mev), which is much less 
than the energy of Stoner excitations. For this reason we are especially interested in the 
low-frequency region. 

At low frequencies the imaginary part of the zero local susceptibility is linear in w ,  
which is easily shown by replacing the matrix elements J f  in formula (2.5) by a constant 



Spin correlation function in paramagnetic iron 6059 

J .  Then the imaginary part of the zero susceptibility Im&(w) may be expressed ana- 
lytically in terms of the density of states (DOS) U(&): 

3 c "  Imx t (w)=-J '  f (&)u(&)[u(&+fiw)  - v ( & - f i ~ ) ] d & .  (2.15) 
2 1. 

For low frequencies this formula takes the form 

(2.16) 

Finally, neglecting thermal smearing of the Fermi-Dirac function, we get a simple 
formula 

(2.17) 

Thus, the linear behaviour of the imaginary part of the zero susceptibility at low fre- 
quencies is generally determined by the DOS on the Fermi level E ~ .  Formula (2.17) can 
be used for estimation of the w dependence of the zero susceptibility at low frequencies 
for various transition metals. 

The real part of the zero local susceptibility in the upper half-plane is connected with 
the imaginary part by the Hilbert transformation 

Im,yt(w) = I d z v 2 ( ~ F ) f i w  = f l w .  

(2.18) 

This allows us to reconstruct ReXL from the known imaginary part, Imxt .  The real 
part, Re xO,(o + io), as a function of w has the usual behaviour. At high frequencies 
Re x t ( w )  - - l/w* because of the oddness oEIm ,yL(w). In the intermediate region the 
function Re xt(w) changesitssign. At zero frequency Re xt has amaximum. Especially 
important for further analysis is a peak-like behaviour of the real part of the zero local 
susceptibility at low frequencies. Just this singularity leads to the singularity in the total 
local susceptibility. 

Essential changes in the susceptibility behaviour are induced by many-particle cor- 
relation effects, which may greatly increase susceptibility in the low-frequency region. 
Indeed, let us write the imaginary part of the total local susceptibility (2.12) as 

(2.19) 

Many-particle effects here are accounted for by the electron interaction constant U. The 
denominator in (2.19) has a resonance character at U = 1/[2 Re &(w)], which, with a 
suitably chosen constant U, can give a radical increase in Imxt(w). Notice that the 
criterion for local magnetic moment formation has the form 

LIZ= U, = 1/[2Rext(O)]. (2.20) 

(On the criterion of local magnetism see, for example, Heine eta1 (1981).) Calculations 
by formula (2.19) for systems with U Z= U, will be incorrect, because at zero frequency 
these systems are unstable relative to creation of local magnetic moments. From this 
point of view, the calculation scheme of the ground state of an electron system must be 
changed so that local magnetic moments are taken into account. It is obvious that a full 
solution of this problem can be based on knowledge of the free energy of a system with 
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values of local magnetic moments variable in space and time. This consideration is in 
progress and will be published elsewhere. 

Increasing the interaction constant U results in growth of the imaginary part of the 
susceptibility at low frequencies, the amplification of Im xt(o) taking on resonance 
character. Similar dependence of the paramagnetic susceptibility x(q ,  w )  on I in the RPA 
wasnoticed by Doniach (1967). The difference between the present work and Doniach's 
is that we consider total local susceptibility and cany out our 'zero' calculations with real 
electron energy bands, rather than with free electrons as in Doniach's work. The change 
of Im xL(w) with the increase of the constant Uis connected with the 'pumping over' of 
intensity of the function Im xL(w) from the high-frequency to the low-frequency region. 
It is easy to prove that the local susceptibility satisfies the moments rule: 
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/oswImxt(w)dw = (2.21) 

So, electron correlation effects can greatly change the imaginary part of the zero sus- 
ceptibility. 

3. Single-site spin correlation function and local momen& 

The spin correlation function is determined as 

A$(f )  = B({Sz( t ) ,  %(O)}). (3.1) 
The frequency correlation function is determined, as usual, by a Fourier transform: 

The Buctuation-dissipation theorem of Callen and Welton connects the correlation 
function (3.2) with the susceptibility (see e.g. White 1983): 

(3.3) 

Here Tis  temperature, kB is the Boltzmann constant and an asterisk means complex 
conjugate. 

In the paramagneticcase, from (3.3) for thesinglz-site frequency correlation function 
A(@) we obtain 

At high frequencies ( w -  m) the multiplier coth(hw/2kBT) tends to unity and the 
function A(@) is congruent with the Im xL(w) function. But at low frequenciescoth(hw/ 
2k,T) = 2kBT/fiw and taking into account (2.19) and (2.17), we have 

(3.5) 
ykB 

[l - 2URe,yt(0)]2 + ( 2 U f l ~ ) ~ " "  A(w) = 6fi 

As seen from this formula, the resonance denominator may greatly enhance the cor- 
relation function and give a peak in A(@). 
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hw ( e V )  

F i p  1. Real and imaginary parts of the Zero local spin susceptibility at temperatures 
T = 0 K (broken curves) and T = 1.25 T, (fun curves). 

One of the general characteristics measured by polarized neutron scattering is the 
local spin moment magnitude. We determine the magnitude of an effective local spin 
moment in a frequency interval [0, o] by the formula 

112 

S , (w)  = ( i [ A ( w ' )  do')  . (3.6) 

It is clear that in the infinite frequency interval this magnitude coincides with a root 
mean square of the local spin moment 

sL = S,(m) = ( $ * ( I =  0))1n, (3.7) 

4. Results of calculations 

Calculations of energy bands .zu0 and wavefunctions qu,(r) for the ground state of 
paramagnetic iron were carried out by the standard Korringa-Kohn-Rostoker (KKR) 
method with a self-consistent crystal potential taken from the Moruzzi eta1 (1978). The 
zero local susceptibility was computed according to formula (2.5) with a = 6 and n = 
n'. The six-dimensional Brillouin zone integration in (2.5) was carried out by the 
tetrahedron method. Results of calculations of zero local susceptibility (real and imagin- 
ary parts) for paramagnetic iron at temperatures T = 0 and 1305 K (1.25T~) are given 
in figure 1. The characteristic peaks of the imaginary part of the susceptibility, 
Im&o), are due to electron DOS singularities and reflect the peculiarities of high- 
energy one-particle (Stoner) excitations, arising from intra- and inter-band transitions. 
It isseen that the imaginarypart of thezerosusceptibility has the first peak at afrequency 
hw = 0.5 eV. It follows from this that considerable changes in zero local susceptibility 
and local magnetic moments due to one-particle excitations are beginning at frequencies 
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Figure 2. Imaginary part of the total local spin susceptibility. 

higher than the frequency  corresponding to the Curie point, hwc = kBTc = 0.1 eV. 
This result accords with the well known conclusion of the one-particle (Stoner) theory, 
which gives for the Curie point of iron the value -4000 K, approximately four times 
higher than the experimental value Tc = 1044 K. Note also that one-particle excitations 
may be directly observed with the help of new rapidly developing experimental photo- 
emission methods, whichallow one to lookdeepintoan energy spectrumand to measure 
spectra of Stoner excitations (see e.g. Penn 1987 and references therein). As is obvious 
from figure 1, the temperature changes the zero susceptibility, but this change is small 
andcannot lead tosignificant alterationof resultsfor thecorrelation function, calculated 
with zero susceptibility at T = 0 K. 

In order to elucidate the role of the electron correlation effects, the total local 
susceptibility xL(w) and the spin correlation function A(w)  have been calculated for the 
values U = 0,0.3 and 0.5 eV and for T = 1.25 Tc. In figure 2, plots of the imaginary part 
of the total susceptibility are given. In accordance with the moments rule (2.21), a great 
enhancement of the imaginary part of the susceptibility in the low-frequency region with 
increase of the constant U is observed. Peculiarities of the local susceptibility are 
conserved in this enhancement, and become more clear. The position of the low-energy 
peak of the imaginary part of the susceptibility curve moves to zero frequency with 
increasing U. In the high-energy region for hw > 3 eV the deviations of Im xL curves 
from the ImXi curve are small. The same behaviour has been observed for the spin 
correlation function. In figure 3 the graphs of the spin correlation function A(w) in the 
energy interval [0,0.8 eV] are presented. As seen from the figure, the spin correlation 
function is greatly enhanced at low energies with increase of U. According to the formula 
(3.4) the enhancement of the spin correlation function is connected not only with 
the enhancement of the imaginary part of the susceptibility, but also with thermal 
enhancement through the factor coth(ho/2kBT). At energies hw > 2kBT this factor is 
near unity and does not give a contribution to the correlation function. 
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0 
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Flgure 4. The local spin moment. 

Infigure4graphsof themagnitudeoftheeffectivelocalspinmoment inparamagnetic 
iron are given as a function of interval length [0, w ]  (see (3.6)) for different values of 
constant U. Camparingthese graphs, it is not difficult to conclude that correlationeffects 
essentially change the magnitude of the effective local moment, the changes amounting 
to dozens of times at some values of U and interval length. Measurements of local 
magnetic moments by polarized neutrons are made in a narrow energy window A = 
0.1 eV. Even in this window it is gathering a significant quantity of the local magnetic 
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A=O. lev 

Figure 5. The local spin moment in the energy 
interval A = 0.1 eV. 

0:s 0:LI b e  0.0 
0.0 

U IeVJ 

momentforiron:M,(A) = 1 . 3 ~ ~  (&(A) = 0.65)(Browneta11982,Shiraneeta11986). 
But determination of local magnetic moments by polarized neutron scattering has a 
shortcoming, connected with the finite interaction time r, - s between a neutron 
and amagnetic atom. It isclear that the high-frequency componentsof local moment with 
times r Q r,  give zero contribution to the cross section of polarized neutron scattering. 
Neutrons completely 'notice' only the low-frequency components of local magnetic 
moments with 1 P 5,. In the intermediate frequency region the components of local 
moments with times r - rn give only a partial contribution to the magnetic crosssection. 
This shortcoming may be overcome by using an experimental technique with smaller 
interaction time than in conventional neutron experiments. For example, one could use 
polarized x-ray experiments or neutron experiments with large neutron energy, as in the 
workofShiraneetal(l986). Forthisreason, comparisonofthermalneutronexperiments 
with theoretical calculations should be carried out for large times t >  r,,, which cor- 
responds to low energies GO.1 eV. Thus, the correlation function, which is responsible 
for collecting the local magnetic moment, must contain major intensity in a narrow 
interval fiw == 0.1 eV. As we have seen above, this amplification of the correlation 
function may be connected only with many-particle effects. 

In figure 5 the Udependence of the effective local spin moment is given for the energy 
window A = 0.1 eV. The value of local spin moment &(A) = 0.65, the same as the 
experimental one, can be obtained with energy window 0.1 eV and the value of the 
constant U = 0.5 eV.Thisconstantiscomparable withtheconstantl = 0.92 eVobtained 
by Janak (1977) in the calculation of the static susceptibility of paramagnetic iron with 
energy bands the same as in the present work. The value I = 0.92 eV was also obtained 
by Gunnarsson (1976, 1977) and Andersen er a1 (1977). However, in contrast to I the 
constant U corresponds to stability of the paramagnetic state (the Stoner criterion is 
unfulfilled: Uv(+) = 0.79 < 1). Moreover, the criterion of local magnetism (2.20) is 
also unfulfilled: the limit value U, is 0.68 eV. It is important to note that the value 
$,(A) = 0.65isobtainedin thelocalsingle-sitescheme, whichdoesnot takeintoaccount 
the spatial correlations of the spin density (the short-range magnetic order effects). Note 
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Figure 6. Time-dependent spin correlation function 

also that the magnitude of the local spin moment in the energy window 0.1 eV with 
constant U = 0 is only $(A) = 0.18, which is smaller than the experimental value. 

Finally, we take into consideration the time-dependent spin correlation function 
A@), which is obtained by inverse Fourier transformation of the function A(w). Con- 
tributions to A(t) are given by all harmonics of the correlation function A(w),  and 
therefore the form of the function A(w) is essential for the time dependence A(f). In 
figure 6 the calculated spin correlation function A(f) is pictured for three values of the 
constant U 0,0.3 and 0.5 eV. The time correlation function for an electron system with 
constant U = 0 decreases very quickly from the value 1.57 at time t = 0 to zero at time 
to = 2 fs. At largertimesthefunctionA(t) hasrapidoscillationsandadampingtail. From 
the physical point of view, this means rather small damping time to of the local spin 
moment created at t = 0. The damping time tD is comparable with the time re of electron 
hopping from one site to another. This confokity is not accidental. Indeed, during the 
time z, an electron leaves a site and significantly changes the electron density. 

Inclusion of electron-electron interaction results in slowing down of inter-site elec- 
tron hopping processes and, eventually, in a considerable increase in the damping time 
of the local spin moment. For U = 0.5 eV the correlation functionA(t) decreases to zero 
in approximately to = 140 fs. Thus, electron-electron interaction stabilizes the local spin 
moment, significantly slowing down the damping rate. For timesconsiderably exceeding 
to the usual oscillations and a damping tail are observed. Consider more closely the 
behaviour of the correlation function A(t)  at t s to. On the small time interval, -4fs, 
the correlation function decreases appreciably and then decreases very slowly. Such 
behaviour is connected with the contribution of two frequency regions of the correlation 
function A ( o ) .  The sharp decrease at small times is determined by the total frequency 
region of the function A(w) ,  and the slope time is inversely proportional to the 
bandwidth. The region of slow decrease of the correlation function A(t) is connected 
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with the resonance peak of A(o)  at low frequencies. Of course, it would not be quite 
correct to speak of the time to as the damping time of the local spin moment. There is 
still the oscillating part, which also reflects the  characteristic behaviour of the local spin 
moment. Moreover, any concrete time does not carry any specific sense in this context. 
Slow decrease of the correlation function A(() shows the importance of accounting for 
the time dispersion effects when developing more adequate theories of paramagnetic 
susceptibility. 

5. Conclusions 

In the present paper we have considered a simple model of accounting for electron 
correlation effects in calculations of the total single-site susceptibility and spin cor- 
relation function. If the usual RPA successfully describes spin excitations at low tem- 
peratures, when long-wave excitations are important, our single-site approximation 
(SSA) more exactly describes short-wave excitations at high temperatures, when any 
magnetic order is almost absent. The local dynamic susceptibility is connected with the 
single-site spin correlation function by the fluctuation-dissipation theorem, which allows 
one to calculate the latter. Results of calculations for paramagnetic iron have clearly 
shown the great importance of electron correlation effects in both local susceptibility 
andsingle-site spin correlation function. Electron correlation effectssignificantly change 
the frequency dependence of the local susceptibility, pumping over the susceptibility 
intensity from high to low frequencies. Similar behaviour is revealed for the local spin 
correlation function too. Electron-electron correlations, drastically changing the results 
of the one-electron approximation, allow one to describe on a quantitative level the 
experiments on polarized neutron scattering and to evaluate the damping time of local 
spin moments in the paramagnetic region (to - lo-” s), which is two orders greater than 
the electron hopping time se - s. In this way, the static approximation of the spin 
fluctuation theoriesissubstantiatedin somedegree. At the same time, whenconstructing 
the quantitative theory of different properties of transition metals, it will be necessary 
to account for the time variation of the electron spin density. Note also that the results 
of the present work were obtained without accounting for the short-range magnetic 
order. 

Once again we stress the model character of the calculation of total local suscep- 
tibility, arising from the SSA with a single effective electron interaction constant U. 
However, qualitatively, and even quantitatively, the estimates obtained by us will 
scarcely change significantly, if susceptibility calculations are carried out on the full 
formula (2.10) with due regard for space and time fluctuations of electron spin density. 
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